A Review of the Use of PLS-SEM in Neuromarketing Research

Revisión del uso del PLS-SEM en las investigaciones sobre neuromarketing




Palabras clave:

análisis de resultados, métodos de investigación empírica, modelos de ecuaciones estructurales, neuromarketing, PLS-SEM, revisión


Una parte importante en las investigaciones en neuromarketing es la metodología utilizada para el análisis estadístico con el fin de comprender, explicar y predecir el comportamiento de los consumidores. Esta investigación analiza el uso del método PLS-SEM en este ámbito. Un total de 20 artículos, que emplearon al menos una técnica de neuromarketing y realizaron análisis PLS-SEM, se encontraron en las principales bases de datos (i.e., WOS, Scopus y otros). Se observa que a menudo no se utiliza enfoque adecuado para el muestreo y el tratamiento de muestras pequeñas. También se encuentran problemas con la aplicación apropiada de los procedimientos comunes de análisis PLS-SEM para la evaluación de los modelos externo e interno, así como con la aplicación de métodos avanzados. Los futuros estudios deberían evaluar la idoneidad de utilizar un enfoque PLS-SEM, según el objetivo de investigación que apoye dicho método, las condiciones que apoyen su uso y sus limitaciones. Se proporcionan directrices a los investigadores sobre cuándo el PLS-SEM es una herramienta de investigación apropiada en neuromarketing, qué herramientas analíticas deben utilizar y cómo validar y comunicar los resultados.


Cargando métricas ...


AHMADPOUR, M.; KORDNAEIJ, A.; YUNESI, A. & MOSHABBAKI, A. (2019). Effective advertisement design to attract customers’ attention: implementing sensory marketing’s principle for feature extraction. Journal of organizational behavior research, 4(S2), 1-34. https://tinyurl.com/2ua4mf6e

BADENES‐ROCHA, A.; BIGNE, E. & RUIZ, C. (2022). Impact of cause‐related marketing on consumer advocacy and cause participation: A causal model based on self‐reports and eye‐tracking measures. Psychology & Marketing, 39(1), 214-226. doi.org/10.1002/mar.21590

BARCLAY, D.; HIGGINS, C. & THOMPSON, R. (1995). The partial least squares (PLS) approach to casual modelling: Personal computer adoption and use as an illustration. Technology studies, 2(2), 285-309. https://tinyurl.com/3dh2b6a2

BECKER, J. M.; CHEAH, J. H.; GHOLAMZADE, R.; RINGLE, C. M. & SARSTEDT, M. (2023). PLS-SEM’s Most Wanted Guidance. International Journal of Contemporary Hospitality Management, 35(1), 321-346.


BELL, L.; VOGT, J.; WILLEMSE, C.; ROUTLEDGE, T.; BUTLER, L.T. y SAKAKI, M. (2018). Beyond Self-Report: A Review of Physiological and Neuroscientific Methods to Investigate Consumer Behavior. Frontiers in Psychology, 9, 1-16. doi.org/10.3389/fpsyg.2018.01655

BENÍTEZ, J.; HENSELER, J.; CASTILLO, A. & SCHUBERTH, F. (2020). How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research. Information & Management, 57(2), 103168. doi.org/10.1016/j.im.2019.05.003

BETTIGA, D. & LAMBERTI, L. (2020). Future-Oriented Happiness: Its Nature and Role in Consumer Decision-Making for New Products. Frontiers in Psychology, 11(929), 1-14. doi.org/10.3389/fpsyg.2020.00929

BETTIGA, D.; LAMBERTI, L. & NOCI, G. (2017). Do mind and body agree? Unconscious versus conscious arousal in product attitude formation. Journal of Business Research, 75, 108-117. doi.org/10.1016/j.jbusres.2017.02.008

BRAND, B. M. & REITH, R. (2022). Cultural differences in the perception of credible online reviews–The influence of presentation format. Decision Support Systems, 154(113710), 1-16. doi.org/10.1016/j.dss.2021.113710

BYRNE, A.; BONFIGLIO, E.; RIGBLY, C. & EDELSTYN, N. (2022). A systematic review of the prediction of consumer preference using EEG measures and machine-learning in neuromarketing research. Brain Informatics, 9(27), 1-23. doi.org/10.1186/s40708-022-00175-3

CASADO-ARANDA, L.-A. & SÁNCHEZ-FERNÁNDEZ, J. (2021). Advances in neuroscience and marketing: analyzing tool possibilities and research opportunities. Spanish Journal of Marketing - ESIC, 26(1), 3-22. doi.org/10.1108/SJME-10-2021-0196

CHERUBINO, P.; MARTÍNEZ, L. A. C.; CARATÙ, M.; CARTOCCI, G.; DI FLUMER; G., MODICA, M.; ROSSI, D.; MANCINI, M. & TRETTEL, A. (2019). Consumer Behavior through the Eyes of Neurophysiological Measures: State-of-the Art and Future Trends. Computational Intelligence and Neuroscience, ID 1976847. doi.org/10.1155/2019/1976847

CHIN, W. W. & DIBBERN, J. (2010). A Permutation Based Procedure for Multi-Group PLS Analysis: Results of Tests of Differences on Simulated Data and a Cross Cultural Analysis of the Sourcing of Information System Services between Germany and the USA. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of Partial Least Squares: Concepts, Methods and Applications (Springer Handbooks of Computational Statistics Series, vol. II) (pp. 171-193). Springer.

COHEN, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Mahwah, NJ: Lawrence Erlbraum.

DANKS, N. P.; SHARMA, P. N. & SARSTEDT, M. (2020). Model selection uncertainty and multimodel inference in partial least squares structural equation modeling (PLS-SEM). Journal of Business Research, 113(March), 13-24. doi.org/10.1016/j.jbusres.2020.03.019

DIJKSTRA, T. K. & HENSELER, J. (2015). Consistent partial least squares path modelling. MIS Quarterly, 39(2), 297-316. https://www.jstor.org/stable/26628355

ERSÖZ, S. & SCHRÖDER, H. (2022). Convenience and Emotions through Facial Expressions: Evidence from Online Medication Shopping Behavior. The Retail and Marketing Review, 18(2), 94-121. https://tinyurl.com/2p8semck

FÉLIX, R. & BORGES, A. (2014). Celebrity endorser attractiveness, visual attention, and implications for ad attitudes and brand evaluations: A replication and extension. J Brand Manag, 21, 579-593. doi.org/10.1057/bm.2014.24

GARZÓN-PAREDES, A. R., & ROYO-VELA, M. (2021). Experimenting through neuromarketing to measure the impact of Spanish cultural heritage. In R.J. Howlett & L.C. Jain (Eds.), Advances in Tourism, Technology and Systems: Selected Papers from, ICOTTS20, Vol. 209 (pp. 380-400). Springer Singapore. doi.org/10.1007/978-981-33-4260-6_34

GARZÓN-PAREDES, A. R., & ROYO-VELA, M. (2023). Emotional and cognitive response to cultural heritage and effects on virtual image of destination; an experimental comparison of data with encephalograms and measurement scales. Vegueta. Anuario de la Facultad de Geografía e Historia, 23, 1, 160-180. https://tinyurl.com/534cbdpr

GARZÓN-PAREDES, A. R., & ROYO-VELA, M. (2023). Emotional and cognitive responses to cultural heritage: a neuromarketing experiment using virtual reality in the tourist destination image model context. Journal of Positive Psychology and Wellbeing, 27(2), 630-651.


GEFEN, D.; RIGDON, E. E. & STRAUB, D. (2011). Editor’s Comments: An Update and Extension to SEM Guidelines for Administrative and Social Science Research. MIS Quarterly, 35(2), 3-14. doi.org/10.2307/23044042

GONZÁLEZ-RODRÍGUEZ, M. R.; DÍAZ-FERNÁNDEZ, M. C. & GÓMEZ, C.P. (2020). Facial-expression recognition: An emergent approach to the measurement of tourist satisfaction through emotions. Telematics and Informatics, 51(101404), 1-14. doi.org/10.1016/j.tele.2020.101404

GRIGALIUNAITE, V. & PILELIENE, L. (2016). Emotional or rational? The determination of the influence of advertising appeal on advertising effectiveness. Scientific Annals of Economics and Business, 63(3), 391-414. https://tinyurl.com/y7wkfzbm

GUENTHER, P.; GUENTHER, M.; RINGLE, C. M.; ZAEFERIAN, G. & CARTWRIGHT, S. (2023). Improving PLS-SEM use for business marketing research. Industrial Marketing Management, 111, 127-142. doi.org/10.1016/j.indmarman.2023.03.010

HAIR, J. F.; HULT, G. T. M.; RINGLE, C. M. & SARSTEDT, M. (2022). A Primer on Partial Least Square Equation Modelling (PLS-SEM) (3rd ed). Thousand Oaks, CA: Sage.

HAIR, J. F.; RISHER, J. J.; SARSTEDT, M. & RINGLE, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. doi.org/10.1108/EBR-11-2018-0203

HAIR, J. F.; SARSTEDT, M.; RINGLE, C. M. & MENA, J. A. (2012). An assessment of the use of partial least square equation modelling in marketing research. J. of Acad. Mark. Sci, 40, 414-433. doi.org/10.1007/s11747-011-0261-6

HAIR, J. F.; SARSTEDT, M.; MATTHEWS, L. M. & RINGLE, C. M. (2016). Identifying and treating unobserved heterogeneity with FIMIX-PLS: part I – method. European Business Review, 28(1), 63-76.


HAIR, J. F.; SARSTEDT, M.; RINGLE, C. M. & GUDERGAN, S. P. (2017). Advanced Issues in Partial Least Squares Structural Equation Modeling. Thousand Oaks, CA: Sage.

HENSELER, J. (2021). Composite-based Structural Equation Modeling: Analyzing Latent and Emergent Variables. The Guilford Press.

HENSELER, J.; HUBONA, G. & RAY, P. A. (2016). Using PLS path modeling in new technology research: updated guidelines. Industrial Management & Data Systems, 116(1), 2-20. doi.org/10.1108/IMDS-09-2015-0382

HENSELER, J.; RINGLE, C. M. & SARSTEDT, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43, 115-135. doi.org/10.1007/s11747-014-0403-8

HENSELER, J.; RINGLE, C. M. & SARSTEDT, M. (2016). Testing measurement invariance of composites using partial least squares. International Marketing Review, 33(3), 405-431. doi.org/10.1108/IMR-09-2014-0304

HERRANDO, C.; JIMÉNEZ-MARTÍNEZ, J.; MARTÍN-DE HOYOS, M. J.; ASAKAWA, K. & YANA, K. (2022). Emotional responses in online social interactions: the mediating role of flow. Asia Pacific Journal of Marketing and Logistics, (ahead-of-print). doi.org/10.1108/APJML-02-2022-0091

KENNY, D. A. (2018). Moderation. davidakenny.net. https://davidakenny.net/cm/moderation.htm

KLESEL, M.; SCHUBERTH, F.; HENSELER, J. & NIEHAVES, B. (2019). A test for multigroup comparison using partial least squares path modeling. Internet Research, 29(3), 464-477. doi.org/10.1108/IntR-11-2017-0418

KLESEL, M.; SCHUBERTH, F.; NIEHAVES, B. & HENSELER, J. (2022). Multigroup Analysis in Information Systems Research using PLS-PM. ACM SIGMIS Database: The DATABASE for Advances in Information Systems, 53(3), 26-48. doi.org/10.1145/3551783.3551787

KOCK, N. (2018). Single missing data imputation in PSL-based structural equation modeling. Journal of Modern Applied Statistics Methods, 17(1), 1-23. doi.org/10.22237/jmasm/1525133160

LI, S. (2019). Emotional Appeals in Tourism TV Commercials: A Psycho-Physiological Study. Journal of Hospitality & Tourism Research, 43(6), 783-806. doi.org/10.1177/1096348019828440

LI, S.; WALTERS, G.; PACKER, J. & SCOTT, N. (2017). A Comparative Analysis of Self-Report and Psychophysiological Measures of Emotion in the Context of Tourism Advertising. Journal of Travel Research, 57(8), 1078-1092. doi.org/10.1177/0047287517733555

LIENGAARD, B. D.; SHARMA, P. N.; HULT, G. T. M.; JENSEN, M. B.; SARSTEDT, M.; HAIR, J. F. & RINGLE, C.M. (2021). Prediction: Coveted, yet forsaken? Introducing a cross-validated predictive ability test in partial least squares path modelling. Decision Sciences, 52(2), 362-392. doi.org/10.1111/deci.12445

MARCOULIDES, G. A.; CHIN, W. W. & SAUNDERS, C. (2009). A Critical Look at Partial Least Squares Modeling. MIS Quarterly, 33(1), 171-175. doi.org/10.2307/20650283

MONTEIRO, P.; GUERREIRO, J. & LOUREIRO, S. M. C. (2020). Understanding the role of visual attention on wines’ purchase intention: an eye-tracking study. International Journal of Wine Business Research, 32(2), 161-179. doi.org/10.1108/IJWBR-03-2019-0017

NITZL, C.; ROLDÁN, J. L. & CEPEDA, G. (2016). Mediation analysis in partial least squares path modelling. Helping researchers discuss more sophisticated models. Industrial Management and Data Systems, 116(9), 1849-1864. doi.org/10.1108/IMDS-07-2015-0302

QU, Q.-X.; GUO, F. & DUFFY, V. G. (2017). Effective use of human physiological metrics to evaluate website usability: An empirical investigation from China. Aslib Journal of Information Management, 69(4), 370-388. doi.org/10.1108/AJIM-09-2016-0155

RAWNAQUE, F. S.; RAHMAN, K. M.; AHNWAR, S. F.; VAIDYANATHN, R.; CHAU, T.; SARKER, F. & AL MAMUN, K. (2020).Tehnological advancements and opportunities in Neuromarketing: a systematic review. Brain Informatics, 7(10), 1-19. doi.org/10.1186/s40708-020-00109-x

RIGDON, E. E.; SARSTEDT, M. & RINGLE, C. M. (2017). On Comparing Results from CB-SEM and PLS-SEM: Five Perspectives and Five Recommendations. Marketing ZFP, 39(3), 4-16. doi.org/10.15358/0344-1369-2017-3-4

RINGLE, C. M.; SARSTEDT, M.; SINKOVICS, N. & SINKOVICS, R. R. (2023). A Perspective on Using Partial Least Squares Structural Equation Modelling in Data Articles. Data in Brief, 48(June), 109074. doi.org/https://doi.org/10.1016/j.dib.2023.109074

ROYO-VELA, M. & GARZÓN-PAREDES, A. (2023). Effects of heritage on destination image: multi-method research based on an appraisal approach to emotional response in-situ. Journal of Heritage Tourism, 1-25. doi.org/10.1080/1743873X.2023.2178926

SARSTEDT, M.; HAIR, J. F. & RINGLE, C. M. (2022). “PLS-SEM: Indeed a Silver Bullet” – Retrospective Observations and Recent Advances. Journal of Marketing Theory & Practice. doi.org/10.1080/10696679.2022.2056488

SARSTEDT, M.; HAIR, J. F.; CHEAH, J. H.; BECKER, J. M. & RINGLE, C. M. (2019). How to Specify, Estimate, and Validate Higher-order Constructs in PLS-SEM. Australasian Marketing Journal, 27(3), 197-211. https://doi.org/10.1016/j.ausmj.2019.05.003

SARSTEDT, M.; HAIR, J. F.; PICK, M.; LIENGAARD, B. D.; RADOMIR, L. & RINGLE, C. M. (2022). Progress in Partial Least Squares Structural Equation Modeling Use in Marketing Research in the Last Decade. Psychology & Marketing, 39(5), 1035-1064. doi.org/10.1002/mar.21640

SARSTEDT, M.; RINGLE, C. M. & HAIR, J. F. (2021). Partial Least Square Equation Modelling. In Homburg, C., Klarmann, M., & Vomberg, A. (Eds.), Handbook of Marketing Research (pp. 1-47). Springer, Cham.


SCHMUELI, G.; SARSTEDT, M.; HAIR, J. F.; CHEAH, J. H.; TING, H. & RINGLE, C. M. (2019). Predictive model assessment in PLS-SEM: Guidelines for using PLSpredict. European Journal of Marketing, 53(11), 2322-2347. doi.org/10.1108/EJM-02-2019-0189

SCHUBERTH, F.; RADEMAKER, M. E. & HENSELER, J. (2022). Assessing the overall fit of composite model estimated by partial least squares equation modelling. European Journal of Marketing. doi.org/10.1108/EJM-08-2020-0586 (forthcoming)

SHARMA, PRATYUSH N.; LIENGAARD, B. D.; HAIR, J. F.; SARSTEDT, M. & RINGLE, C. M. (2022). Predictive model assessment and selection in composite-based modeling using PLS-SEM: extensions and guidelines for using CVPAT. European Journal of Marketing. doi.org/10.1108/EJM-08-2020-0636

SHARMA, PRATYUSH NIDHI; SHMUELI, G.; SARSTEDT, M.; DANKS, N. & RAY, S. (2021). Prediction‐Oriented Model Selection in Partial Least Squares Path Modeling. Decision Sciences, 52(3), 567-607. doi.org/10.1111/deci.12329

SHMUELI, G.; RAY, S.; VELASQUEZ ESTRADA, J. M. & CHATLA, S. B. (2016). The elephant in the room: Predictive performance of PLS models. Journal of Business Research, 69(10), 4552-4564. doi.org/10.1016/j.jbusres.2016.03.049

STREUKENS, S. & LEROI-WERELDS, S. (2016). Bootstrapping and PLS-SEM: A step-by-step guide to get more out of your bootstrap results. European Management Journal, 34(6), 618-632. doi.org/10.1016/j.emj.2016.06.003

UHM, J. P.; LEE, H. W.; HAN, J. W. & KIM, D. K. (2022). Effect of background music and hierarchy-of-effects in watching women's running shoes advertisements. International Journal of Sports Marketing and Sponsorship, 23(1), 41-58. doi.org/10.1108/IJSMS-09-2020-0159

WANG, H.; LU, S. & LIU, Y. (2022). Missing data imputation in PLS-SEM. Quality & Quantity, 56(January), 4777-4795.


YEN, C. & CHIANG, M. C. (2020). Trust me, if you can: a study on the factors that influence consumers’ purchase intention triggered by chatbots based on brain image evidence and self-reported assessments. Behaviour & Information Technology, 40(11), 1177-1194. doi.org/10.1080/0144929X.2020.1743362



Cómo citar

Vasilica-Maria, M., Jiménez Sánchez, Álvaro, & Ehrlich, J. S. (2023). A Review of the Use of PLS-SEM in Neuromarketing Research: Revisión del uso del PLS-SEM en las investigaciones sobre neuromarketing. index.Comunicación, 13(2), 119–146. https://doi.org/10.33732/ixc/13/02Arevie

Artículos similares

También puede {advancedSearchLink} para este artículo.