Neuromarketing Coming of Age: Scientific Mapping of 18 Years of Research in the Field
DOI:
https://doi.org/10.33732/ixc/13/02MayoriKeywords:
Neuromarketing, Consumer Neuroscience, Bibliometric analysis, Scientific map, Co-ocurrence analysis, SciMATAbstract
This research focuses on obtaining the intellectual structure of the scientific area of Neuromarketing and Consumer Neuroscience. To this purpose, a bibliometric analysis of keyword co-occurrence is performed on a corpus of 355 articles extracted from the SCI-E and SSCI editions of the WoS Main Collection, covering the 18 full years between 2005 and 2022. The results show the most prolific and cited authors and journals, as well as the intellectual structure of the field, divided into nine clusters: Electroencephalography (EEG), Neuroeconomics, Impact, and Eye-Tracking (motor topics); Event-Related Potential (ERP) (highly developed and isolated topics); Perception, Reward, and Behavior (emerging or declining topics); Arousal (basic or transversal). Following a thorough analysis of the results, we discuss the contributions of the area to understanding human behavior, its methodological contributions, the scope of the research field, and the ethical considerations of various stakeholders. One of the fundamental contributions of this work consists of identifying the main lines, methodological challenges, and contributions to society of the scientific area, ordering and categorizing a large part of the research carried out to date.
Metrics
References
ALDAYEL, M.; YKHLEF, M. & AL-NAFJAN, A. (2020). Deep learning for EEG-based preference classification in neuromarketing. Applied Sciences, 10(4), 1525. doi.org/10.3390/app10041525
ALONSO DOS SANTOS, M.; CALABUIG MORENO, F. & CRESPO-HERVÁS, J. (2019). Influence of perceived and effective congruence on recall and purchase intention in sponsored printed sports advertising: an eye-tracking application. International Journal of Sports Marketing and Sponsorship, 20(4), 617-633. doi.org/10.1108/IJSMS-10-2018-0099
ALSHARIF, A. H.; MD SALLEH, N. Z.; BAHARUN, R. & RAMI HASHEM, E. A. (2021). Neuromarketing research in the last five years: A bibliometric analysis. Cogent Business & Management, 8(1), 1978620. doi.org/10.1080/23311975.2021.1978620
ALSHARIF, A. H.; SALLEH, N. O. R. Z. M. D. & BAHARUN, R. (2020). Bibliometric analysis. Journal of Theoretical and Applied Information Technology, 98(15), 2948-2962.
ALSHARIF, A. H.; SALLEH, N. Z. M.; BAHARUN, R.; ALSHARIF, Y. H. & ABUHASSNA, H. (2021). A Bibliometric Analysis of Neuromarketing: Current Status, Development and Future Directions. International Journal of Academic Research in Accounting, Finance and Management Business Sciences, 11(3), 828-847. doi.org/10.6007/IJARAFMS/v11-i3/11673
ALSHARIF, A.; SALLEH, N. Z. M.; PILELIENĖ, L.; ABBAS, A. F. & ALI, J. (2022). Current Trends in the Application of EEG in Neuromarketing: A Bibliometric Analysis. Scientific Annals of Economics and Business, 69(3), 393-415. doi.org/10.47743/saeb-2022-0020
AÑAÑOS-CARRASCO, E. (2015). Eyetracker technology in elderly people: How integrated television content is paid attention to and processed. Comunicar, 23(45), 75-83. doi.org/10.3916/C45-2015-08
BASTIAANSEN, M.; STRAATMAN, S.; DRIESSEN, E.; MITAS, O.; STEKELENBURG, J. & WANG, L. (2018). My destination in your brain: A novel neuromarketing approach for evaluating the effectiveness of destination marketing. Journal of destination marketing & management, 7, 76-88. doi.org/10.1016/j.jdmm.2016.09.003
BERNS, G. S. & MOORE, S. E. (2012). A neural predictor of cultural popularity. Journal of Consumer Psychology, 22(1), 154-160. doi.org/10.1016/j.jcps.2011.05.001
BERTHOUD, H. R. (2012). The neurobiology of food intake in an obesogenic environment. Proceedings of the Nutrition Society, 71(4), 478-487. doi.org/10.1017/S0029665112000602
BOKSEM, M. A. & SMIDTS, A. (2015). Brain responses to movie trailers predict individual preferences for movies and their population-wide commercial success. Journal of Marketing Research, 52(4), 482-492. doi.org/10.1509/jmr.13.0572
BOZ, H.; ARSLAN, A. & KOC, E. (2017). Neuromarketing aspect of tourism pricing psychology. Tourism Management Perspectives, 23, 119-128. doi.org/10.1016/j.tmp.2017.06.002
CAKIR, M. P.; ÇAKAR, T.; GIRISKEN, Y. & YURDAKUL, D. (2018). An investigation of the neural correlates of purchase behavior through fNIRS. European Journal of Marketing, 52(1/2), 224-243.
doi.org/10.1108/EJM-12-2016-0864
CALLON, M.; COURTIAL, J. P.; TURNER, W. A. & BAUIN, S. (1983). From translations to problematic networks: an introduction to co-word analysis. Information (International Social Science Council), 22(2), 191-235. doi.org/10.1177/053901883022002003
CARTOCCI, G.; CARATÙ, M.; MODICA, E.; MAGLIONE, A. G.; ROSSI, D.; CHERUBINO, P. & BABILONI, F. (2017). Electroencephalographic, heart rate, and galvanic skin response assessment for an advertising perception study: application to antismoking public service announcements. JoVE (Journal of Visualized Experiments), (126), e55872. doi.org/10.3791/55872
COBO, M. J. (2012). SciMAT: Herramienta software para el análisis de la evolución del conocimiento científico. Propuesta de una metodología de evaluación. Universidad de Granada. https://bit.ly/3Nyg7CP
COBO, M. J.; LÓPEZ-HERRERA, A. G.; HERRERA-VIEDMA, E. & HERRERA, F. (2012). SciMAT: A new science mapping analysis software tool. Journal of the Association for Information Science and Technology, 63(8), 1609-1630. doi.org/10.1002/asi.22688
COUWENBERG, L. E.; BOKSEM, M. A.; DIETVORST, R. C.; WORM, L.; VERBEKE, W. J. & SMIDTS, A. (2017). Neural responses to functional and experiential ad appeals: Explaining ad effectiveness. International Journal of Research in Marketing, 34(2), 355-366. doi.org/10.1016/j.ijresmar.2016.10.005
DIMOKA, A.; PAVLOU, P. A. & DAVIS, F. D. (2010). Research Commentary—NeuroIS: The Potential of Cognitive Neuroscience for Information Systems Research. Information Systems Research, 22(4), 687-702. doi.org/10.1287/isre.1100.0284
DUQUE-HURTADO, P.; SAMBONI-RODRIGUEZ, V.; CASTRO-GARCIA, M.; MONTOYA-RESTREPO, L. A. & MONTOYA-RESTREPO, I. A. (2020). Neuromarketing: Its current status and research perspectives. Estudios Gerenciales, 36(157), 525-539. doi.org/10.18046/j.estger.2020.157.3890
EIJLERS, E.; BOKSEM, M. A. & SMIDTS, A. (2020). Measuring neural arousal for advertisements and its relationship with advertising success. Frontiers in neuroscience, 14, 736. doi.org/10.3389/fnins.2020.00736
GARCÍA-MADARIAGA, J.; LÓPEZ, M. F. B.; BURGOS, I. M. & VIRTO, N. R. (2019). Do isolated packaging variables influence consumers' attention and preferences? Physiology & behavior, 200, 96-103. doi.org/10.1016/j.physbeh.2018.04.030
GARCZAREK-BĄK, U.; SZYMKOWIAK, A.; GACZEK, P. & DISTERHEFT, A. (2021). A comparative analysis of neuromarketing methods for brand purchasing predictions among young adults. Journal of Brand Management, 28, 171-185. doi.org/10.1057/s41262-020-00221-7
GOTO, N.; MUSHTAQ, F.; SHEE, D.; LIM, X. L.; MORTAZAVI, M.; WATABE, M. & SCHAEFER, A. (2017). Neural signals of selective attention are modulated by subjective preferences and buying decisions in a virtual shopping task. Biological psychology, 128, 11-20. doi.org/10.1016/j.biopsycho.2017.06.004
GUIXERES, J.; BIGNÉ, E.; AUSIN AZOFRA, J. M.; ALCANIZ RAYA, M.; COLOMER GRANERO, A.; FUENTES HURTADO, F. & NARANJO ORNEDO, V. (2017). Consumer neuroscience-based metrics predict recall, liking and viewing rates in online advertising. Frontiers in psychology, 8, 1808. doi.org/10.3389/fpsyg.2017.01808
GUPTA, R. & FALK, T. H. (2016). Relevance vector classifier decision fusion and EEG graph-theoretic features for automatic affective state characterization. Neurocomputing, 174, 875-884. doi.org/10.1016/j.neucom.2015.09.085
HAMELIN, N.; EL MOUJAHID, O. & THAICHON, P. (2017). Emotion and advertising effectiveness: A novel facial expression analysis approach. Journal of Retailing and Consumer Services, 36, 103-111. doi.org/10.1016/j.jretconser.2017.01.001
HAMELIN, N.; THAICHON, P.; ABRAHAM, C.; DRIVER, N.; LIPSCOMBE, J. & PILLAI, J. (2020). Storytelling, the scale of persuasion and retention: A neuromarketing approach. Journal of Retailing and Consumer Services, 55, 102099. doi.org/10.1016/j.jretconser.2020.102099
HARRIS, J. M.; CIORCIARI, J. & GOUNTAS, J. (2019). Consumer neuroscience and digital/social media health/social cause advertisement effectiveness. Behavioral Sciences, 9(4), 42. doi.org/10.3390/bs9040042
HSU, L. & CHEN, Y. J. (2019). Music and wine tasting: an experimental neuromarketing study. British food journal, 122(8), 2725-2737. doi.org/10.1108/BFJ-06-2019-0434
HSU, M. Y. T. & CHENG, J. M. S. (2018). fMRI neuromarketing and consumer learning theory: Word-of-mouth effectiveness after product harm crisis. European journal of marketing. doi.org/10.1108/EJM-12-2016-0866
HUBERT, M.; HUBERT, M.; LINZMAJER, M.; RIEDL, R. & KENNING, P. (2018). Trust me if you can–neurophysiological insights on the influence of consumer impulsiveness on trustworthiness evaluations in online settings. European Journal of Marketing, 52(1/2), 118-146.
doi.org/10.1108/EJM-12-2016-0870
JAVOR, A.; KOLLER, M.; LEE, N.; CHAMBERLAIN, L. & RANSMAYR, G. (2013). Neuromarketing and consumer neuroscience: contributions to neurology. BMC neurology, 13, 1-12. doi.org/10.1186/1471-2377-13-13
JONES, W. J.; CHILDERS, T. L. & JIANG, Y. (2012). The shopping brain: Math anxiety modulates brain responses to buying decisions. Biological Psychology, 89(1), 201-213. doi.org/10.1016/j.biopsycho.2011.10.011
KARAMPOURNIOTI, E. & WIEDMANN, K. P. (2022). Storytelling in online shops: the impacts on explicit and implicit user experience, brand perceptions and behavioral intention. Internet Research, 32(7), 228-259. doi.org/10.1108/INTR-09-2019-0377
KHUSHABA, R. N.; WISE, C.; KODAGODA, S.; LOUVIERE, J.; KAHN, B. E. & TOWNSEND, C. (2013). Consumer neuroscience: Assessing the brain response to marketing stimuli using electroencephalogram (EEG) and eye tracking. Expert systems with applications, 40(9), 3803-3812. doi.org/10.1016/j.eswa.2012.12.095
KIM, Y.; PARK, K.; KIM, Y.; YANG, W.; HAN, D. & KIM, W. S. (2020). The impact of visual art and high affective arousal on heuristic decision-making in consumers. Frontiers in Psychology, 11, 565829. doi.org/10.3389/fpsyg.2020.565829
LEE, E. J.; KWON, G.; SHIN, H. J.; YANG, S.; LEE, S. & SUH, M. (2014). The spell of green: Can frontal EEG activations identify green consumers? Journal of business ethics, 122, 511-521. doi.org/10.1007/s10551-013-1775-2
LEE, N.; BRODERICK, A. J. & CHAMBERLAIN, L. (2007). What is ‘neuromarketing’? A discussion and agenda for future research. International journal of psychophysiology, 63(2), 199-204. doi.org/10.1016/j.ijpsycho.2006.03.007
LIAO, W.; ZHANG, Y. & PENG, X. (2019). Neurophysiological effect of exposure to gossip on product endorsement and willingness-to-pay. Neuropsychologia, 132, 107123. doi.org/10.1016/j.neuropsychologia.2019.107123
LIBERT, A. & VAN HULLE, M. M. (2019). Predicting premature video skipping and viewer interest from EEG recordings. Entropy, 21(10), 1014. doi.org/10.3390/e21101014
LIM, W. M. (2018). Demystifying neuromarketing. Journal of business research, 91, 205-220. doi.org/10.1016/j.jbusres.2018.05.036
LIN, Y. P.; YANG, Y. H. & JUNG, T. P. (2014). Fusion of electroencephalographic dynamics and musical contents for estimating emotional responses in music listening. Frontiers in neuroscience, 8, 94. doi.org/10.3389/fnins.2014.00094
LOPES, A. T.; DE AGUIAR, E.; DE SOUZA, A. F. & OLIVEIRA-SANTOS, T. (2017). Facial expression recognition with convolutional neural networks: coping with few data and the training sample order. Pattern recognition, 61, 610-628. doi.org/10.1016/j.patcog.2016.07.026
MA, Q.; ABDELJELIL, H. M. M. & HU, L. (2019). The influence of the consumer ethnocentrism and cultural familiarity on brand preference: evidence of event-related potential (ERP). Frontiers in Human Neuroscience, 13, 220. doi.org/10.3389/fnhum.2019.00220
MA, Q.; HU, L. & WANG, X. (2015). Emotion and novelty processing in an implicit aesthetic experience of architectures: evidence from an event-related potential study. Neuroreport, 26(5), 279-284. doi.org/10.1097/WNR.0000000000000344
MA, Q.; WANG, K.; WANG, X.; WANG, C. & WANG, L. (2010). The influence of negative emotion on brand extension as reflected by the change of N2: a preliminary study. Neuroscience letters, 485(3), 237-240. doi.org/10.1016/j.neulet.2010.09.020
MA, Q.; WANG, X.; DAI, S. & SHU, L. (2007). Event-related potential N270 correlates of brand extension. Neuroreport, 18(10), 1031-1034. doi.org/10.1097/WNR.0b013e3281667d59
MA, Q.; WANG, X.; SHU, L. & DAI, S. (2008). P300 and categorization in brand extension. Neuroscience letters, 431(1), 57-61. doi.org/10.1016/j.neulet.2007.11.022
MADIPAKKAM, A. R.; BELLUCCI, G.; ROTHKIRCH, M. & PARK, S. Q. (2019). The influence of gaze direction on food preferences. Scientific reports, 9(1), 5604. doi.org/10.1038/s41598-019-41815-9
MAÑAS-VINIEGRA, L.; NÚÑEZ-GÓMEZ, P. & TUR-VIÑES, V. (2020). Neuromarketing as a strategic tool for predicting how Instagramers have an influence on the personal identity of adolescents and young people in Spain. Heliyon, 6(3), e03578. doi.org/10.1016/j.heliyon.2020.e03578
MEDINA, C. A. G.; MARTÍNEZ-FIESTAS, M.; ARANDA, L. A. C. & SÁNCHEZ-FERNÁNDEZ, J. (2021). Is it an error to communicate CSR Strategies? Neural differences among consumers when processing CSR messages. Journal of Business Research, 126, 99-112. doi.org/10.1016/j.jbusres.2020.12.044
MEDINA, C. A. G.; MARTINEZ-FIESTAS, M.; VIEDMA-DEL-JESÚS, M. I. & ARANDA, L. A. C. (2020). The processing of price during purchase decision making: Are there neural differences among prosocial and non-prosocial consumers? Journal of Cleaner Production, 271, 122648. doi.org/10.1016/j.jclepro.2020.122648
MISSAGLIA, A. L.; OPPO, A.; MAURI, M.; GHIRINGHELLI, B.; CICERI, A. & RUSSO, V. (2017). The impact of emotions on recall: An empirical study on social ads. Journal of Consumer Behaviour, 16(5), 424-433. doi.org/10.1002/cb.1642
MORIN, C. (2011). Neuromarketing: the new science of consumer behavior. Society, 48(2), 131-135. doi.org/10.1007/s12115-010-9408-1
MUÑOZ-LEIVA, F.; HERNÁNDEZ-MÉNDEZ, J. & GÓMEZ-CARMONA, D. (2019). Measuring advertising effectiveness in Travel 2.0 websites through eye-tracking technology. Physiology & behavior, 200, 83-95. doi.org/10.1016/j.physbeh.2018.03.002
OHME, R.; REYKOWSKA, D.; WIENER, D. & CHOROMANSKA, A. (2010). Application of frontal EEG asymmetry to advertising research. Journal of economic psychology, 31(5), 785-793. doi.org/10.1016/j.joep.2010.03.008
PAULE-VIANEZ, J.; GÓMEZ-MARTÍNEZ, R. & PRADO-ROMÁN, C. (2020). A bibliometric analysis of behavioural finance with mapping analysis tools. European Research on Management and Business Economics, 26(2), 71-77. doi.org/10.1016/j.iedeen.2020.01.001
PAZ GIL, I. (2021). Aportaciones de la neurociencia del consumidor a la experiencia del cliente. En BAÑOS GONZÁLEZ, M.; BARAYBAR FERNÁNDEZ, A. & RAJAS FERNÁNDEZ, M., Procesos cognitivos y neuromarketing: Un acercamiento a las emociones del consumidor (pp. 109-124). Comunicación Social Ediciones y Publicaciones. https://bit.ly/3qW2h5v
PAZ-GIL, I.; PAULE-VIANEZ, J. & PRADO-ROMÁN, A. (2021). A science mapping analysis of blood donation behaviour. Revista Espacios, 42(2), 203-221. doi.org/10.48082/espacios-a21v42n02p16
PAZ-GIL, I.; ROMÁN, A. P. & ROMÁN, M. P. (2022). Is the COVID-19 Pandemic Shifting the Social-Business Paradigm? In Research Anthology on Business Continuity and Navigating Times of Crisis (pp. 1300-1317). IGI Global.
PLASSMANN, H.; RAMSØY, T. Z. & MILOSAVLJEVIC, M. (2012). Branding the brain: A critical review and outlook. Journal of consumer psychology, 22(1), 18-36. doi.org/10.1016/j.jcps.2011.11.010
PLASSMANN, H.; VENKATRAMAN, V.; HUETTEL, S. & YOON, C. (2015). Consumer neuroscience: applications, challenges, and possible solutions. Journal of marketing research, 52(4), 427-435. doi.org/10.1509/jmr.14.0048
RAMSØY, T. Z. (2019). Building a foundation for neuromarketing and consumer neuroscience research: How researchers can apply academic rigor to the neuroscientific study of advertising effects. Journal of Advertising Research, 59(3), 281-294. doi.org/10.2501/JAR-2019-034
RAMSØY, T. Z.; JACOBSEN, C.; FRIIS-OLIVARIUS, M.; BAGDZIUNAITE, D. & SKOV, M. (2017). Predictive value of body posture and pupil dilation in assessing consumer preference and choice. Journal of Neuroscience, Psychology, and Economics, 10(2-3), 95. doi.org/10.1037/npe0000073
REIMANN, M.; CASTAÑO, R.; ZAICHKOWSKY, J. & BECHARA, A. (2012a). How we relate to brands: Psychological and neurophysiological insights into consumer–brand relationships. Journal of Consumer Psychology, 22(1), 128-142. doi.org/10.1016/j.jcps.2011.11.003
REIMANN, M.; CASTAÑO, R.; ZAICHKOWSKY, J. & BECHARA, A. (2012b). Novel versus familiar brands: An analysis of neurophysiology, response latency, and choice. Marketing letters, 23, 745-759.
doi.org/10.1007/s11002-012-9176-3
REIMANN, M.; ZAICHKOWSKY, J.; NEUHAUS, C.; BENDER, T. & WEBER, B. (2010). Aesthetic package design: A behavioral, neural, and psychological investigation. Journal of consumer psychology, 20(4), 431-441. doi.org/10.1016/j.jcps.2010.06.009
SÁNCHEZ-NÚÑEZ, P.; COBO, M. J.; VACCARO, G.; PELÁEZ, J. I. & HERRERA-VIEDMA, E. (2021). Citation classics in consumer neuroscience, neuromarketing and neuroaesthetics: identification and conceptual analysis. Brain Sciences, 11(5), 548. doi.org/10.3390/brainsci11050548
SCHMITT, B. (2012). The consumer psychology of brands. Journal of consumer Psychology, 22(1), 7-17. doi.org/10.1016/j.jcps.2011.09.005
SCIMAGO LAB (2021). Producción e impacto científico en el mundo. https://bit.ly/3NqquZf
SHEN, F. & MORRIS, J. D. (2016). Decoding neural responses to emotion in television commercials: an integrative study of self-reporting and fMRI measures. Journal of Advertising Research, 56(2), 193-204. doi.org/10.2501/JAR-2016-016
SIDDIQUE, J.; SHAMIM, A.; NAWAZ, M. & ABID, M. F. (2022). The hope and hype of neuromarketing: a bibliometric analysis. Journal of Contemporary Marketing Science (ahead-of-print).
doi.org/10.1108/JCMARS-07-2022-0018
SINGH, J.; GOYAL, G. & GILL, R. (2020). Use of neurometrics to choose optimal advertisement method for omnichannel business. Enterprise Information Systems, 14(2), 243-265. doi.org/10.1080/17517575.2019.1640392
SMIDTS, A.; HSU, M.; SANFEY, A. G.; BOKSEM, M. A.; EBSTEIN, R. B.; HUETTEL, S. A.; KABLE, J. W.; KARMARJAR, U. R.; KITAYAMA, S.; KNUTSON, B.; LIBERZON, I.; LOHRENZ, T.; STALLEN, M. & YOON, C. (2014). Advancing consumer neuroscience. Marketing Letters, 25, 257-267.
doi.org/10.1007/s11002-014-9306-1
SPENCE, C. (2019). Neuroscience-inspired design: From academic neuromarketing to commercially relevant research. Organizational Research Methods, 22(1), 275-298. doi.org/10.1177/1094428116672003
STANTON, S. J.; SINNOTT-ARMSTRONG, W. & HUETTEL, S. A. (2017). Neuromarketing: Ethical implications of its use and potential misuse. Journal of Business Ethics, 144, 799-811.
doi.org/10.1007/s10551-016-3059-0
SUNG, B.; WILSON, N. J.; YUN, J. H. & LEE, E. J. (2020). What can neuroscience offer marketing research? Asia Pacific Journal of Marketing and Logistics, 32(5), 1089-1111. doi.org/10.1108/APJML-04-2019-0227
TAPIA FRADE, A.; RAJAS FERNÁNDEZ, M. & MARTÍN GUERRA, E. (2017). Diferencias de género en el consumo audiovisual: un experimento de neurociencia sobre spots de televisión. Vivat Academia. Revista De Comunicación, (141), 39-54. doi.org/10.15178/va.2017.141.39-54
TRELEAVEN-HASSARD, S.; GOLD, J.; BELLMAN, S.; SCHWEDA, A.; CIORCIARI, J.; CRITCHLEY, C. & VARAN, D. (2010). Using the P3a to gauge automatic attention to interactive television advertising. Journal of economic psychology, 31(5), 777-784. doi.org/10.1016/j.joep.2010.03.007
VARAN, D.; LANG, A.; BARWISE, P.; WEBER, R. & BELLMAN, S. (2015). How Reliable Are Neuromarketers' Measures of Advertising Effectiveness? Data from Ongoing Research Holds No Common Truth among Vendors. Journal of advertising research, 55(2), 176-191.
doi.org/10.2501/JAR-55-2-176-191
VECCHIATO, G.; MAGLIONE, A. G.; CHERUBINO, P.; WASIKOWSKA, B.; WAWRZYNIAK, A.; LATUSZYNSKA, A.; LATUSZYNSKA, M; NERMEND, K; GRAZIANI, I; LEUCCI, MR; TRETTEL, A, & BABILONI, F. (2014). Neurophysiological tools to investigate consumer’s gender differences during the observation of TV commercials. Computational and mathematical methods in medicine, 2014. doi.org/10.1155/2014/912981
VECCHIATO, G.; TOPPI, J.; ASTOLFI, L.; DE VICO FALLANI, F.; CINCOTTI, F.; MATTIA, D.; BEZ, F. & BABILONI, F. (2011). Spectral EEG frontal asymmetries correlate with the experienced pleasantness of TV commercial advertisements. Medical & biological engineering & computing, 49, 579-583. doi.org/10.1007/s11517-011-0747-x
VENKATRAMAN, V.; CLITHERO, J. A.; FITZSIMONS, G. J. & HUETTEL, S. A. (2012). New scanner data for brand marketers: How neuroscience can help better understand differences in brand preferences. Journal of consumer psychology, 22(1), 143-153. doi.org/10.1016/j.jcps.2011.11.008
WALTER, H.; ABLER, B.; CIARAMIDARO, A. & ERK, S. (2005). Motivating forces of human actions: Neuroimaging reward and social interaction. Brain research bulletin, 67(5), 368-381. doi.org/10.1016/j.brainresbull.2005.06.016
WANG, C.; LI, Y.; LUO, X.; MA, Q.; FU, W. & FU, H. (2018). The effects of money on fake rating behavior in e-commerce: Electrophysiological time course evidence from consumers. Frontiers in neuroscience, 12, 156. doi.org/10.3389/fnins.2018.00156
WANG, J. & HAN, W. (2014). The impact of perceived quality on online buying decisions: an event-related potentials perspective. Neuroreport, 25(14), 1091-1098. doi.org/10.1097/WNR.0000000000000233
WANG, X.; MA, Q. & WANG, C. (2012). N400 as an index of uncontrolled categorization processing in brand extension. Neuroscience letters, 525(1), 76-81. doi.org/10.1016/j.neulet.2012.07.043
WEI, Z.; WU, C.; WANG, X.; SUPRATAK, A.; WANG, P. & GUO, Y. (2018). Using support vector machine on EEG for advertisement impact assessment. Frontiers in neuroscience, 12, 76. doi.org/10.3389/fnins.2018.00076
WIGGIN, K. L.; REIMANN, M. & JAIN, S. P. (2019). Curiosity tempts indulgence. Journal of Consumer Research, 45(6), 1194-1212. doi.org/10.1093/jcr/ucy055
YAĞCI, M. I.; KUHZADY, S.; BALIK, Z. S. & ÖZTÜRK, L. (2018). In search of consumer's black box: a bibliometric analysis of neuromarketing research. Tüketici ve Tüketim Araştırmaları Dergisi Journal of Consumer and Consumption Research, 10(1), 101-134.
YOON, C.; GONZALEZ, R.; BECHARA, A.; BERNS, G. S.; DAGHER, A. A.; DUBÉ, L.; HUETTEL, S. A.; KABLE, J. W.; LIBERZON, I.; PLASSMANN, H.; SMIDTS, A. & SPENCE, C. (2012). Decision neuroscience and consumer decision making. Marketing letters, 23, 473-485. doi.org/10.1007/s11002-012-9188-z
ZHANG, J.; YUN, J. H. & LEE, E. J. (2021). Brain buzz for Facebook? Neural indicators of SNS content engagement. Journal of Business Research, 130, 444-452. doi.org/10.1016/j.jbusres.2020.01.029
ZHAO, M.; WANG, J.; ZHANG, H. & ZHAO, G. (2019). ERP perspective analysis of PSS component and decision-making. Sustainability, 11(4), 1063. doi.org/10.3390/su11041063
ZHU, Z.; JIN, Y.; SU, Y.; JIA, K.; LIN, C. L. & LIU, X. (2022). Bibliometric-Based Evaluation of the Neuromarketing Research Trend: 2010–2021. Frontiers in Psychology, 13, 872468. doi.org/10.3389/fpsyg.2022.872468
ZUSCHKE, N. (2020). An analysis of process-tracing research on consumer decision-making. Journal of business research, 111, 305-320. doi.org/10.1016/j.jbusres.2019.01.028
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Iria Paz Gil, Kacper Zagala, Luis Manuel Cerdá Suárez (Autor/a)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who submit to this journal agree to the following terms:
Authors retain copyright and ensure the magazine's right to be the first publication of the work as licensed under a Creative Commons Attribution-NoComercial 4.0 International License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine, with no commercial purpose.
Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the magazine (for example, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
It allows and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as a citation more early and most of the published work (See The Effect of Open Access).